Bridging the Gap


Screen Shot 2016-07-29 at 12.48.44 PMContributed by Leah Shizuru

Whooosh…

As I stood near the puka and gazed at the raw beauty of the steady flow of incoming ocean water spilling into the fishpond I listened to and appreciated the unmistakable sound of rushing water. What a thrilling experience for both the eyes and ears.

It was hard to fathom that the 80 ft gap directly in front of me would soon be closed. I pondered how the volunteers would ever complete this task when the water appeared to ebb and flow with such impressive speed. Though difficult to imagine, I was told that the enthusiastic bunch of men and women that worked daily on closing the puka, or gap, were making great progress with the help of a campaign to fund this labor-intensive project and raise awareness of the need to close the break in the wall in He’eia fishpondPani ka Puka.

Screen Shot 2016-07-29 at 12.48.12 PM

Bridging the gap would be a crucial step toward restoring this fishpond to its original state and enabling traditional aquaculture to ensue again. Ultimately, caretakers of He‘eia Fishpond would once again be able to raise enough herbivorous fish such as mullet (‘ama‘ama) and milkfish (‘awa) to provide for the community. Sustainability. Preservation. Tradition.

Bridging the gap

Benefits of traditional fishponds extend to research and education. That is how I became involved with He‘eia Fishpond. Last summer I had the opportunity  to intern at C-MORE (Center for Microbial Oceanography: Research and Education), a NSF Science and Technology Center, to work on a research project with Dr. Rosie Alegado looking at the microbial diversity in this coastal ecosystem. As part of my research, I ventured to the fishpond once a week with my two lab mates in order to gather water samples. These water samples were then taken back to the lab, filtered, and subjected to extraction of genomic DNA.

During these visits we got to know the Paepae o He’eia stewards (kia’i loko), learn about the history surrounding the fishpond and see the progress of the various other restoration

Screen Shot 2016-07-29 at 12.48.32 PM

Pictured left to right: Dr. Kiana Frank, Charles Beebe, Kyle Yoshida, and Ka’ena Lee

projects including the removal of mangrove from along the ancient fishpond wall  and invasive limu (algae) from in and around the pond. Our research aimed to complement these restoration efforts. Through a better understanding of the genetic makeup of microbes such as photosynthetic bacteria and microalgae that form the base of the food chain in the fishpond, better management policies could be implemented.

Our weekly visits to the fishpond also enabled us to see, first hand, the outreach efforts of the fishpond stewards. One evening during a 26-hour diurnal experiment in which we worked with Dr. Kiana Frank (who was analyzing microbial communities at different depths within the sediment as well as their sources of respiration and respiration rates), we interacted with a few children who were on the property.  

During the process of water filtration and processing of sediment cores we were surrounded by a group of inquisitive and eager children who wanted to help. Ka‘ena, who was 5 years old, asked, “What are you doing?” as he looked at the filtration apparatus, bewildered. My co-workers and I told him that we were filtering water that we had just collected in order to study the microbes in the fishpond. Ka‘ena looked puzzled and we could see from the confused, yet still-interested look on his face that we needed to add to our answer and perhaps simplify it. I quickly began to think of a way to re-explain this so that he could understand it. Thankfully, my labmate, Mikela, interjected, “Oh, ok! So you know when you’re finished cooking spaghetti noodles and you have to drain out the water?” Ka‘ena nodded. “How do you get rid of the water that you cook your pasta in,” Mikela asked. He described a strainer and Mikela replied in an encouraging tone, “Yes, exactly, a strainer. So what this is [as she pointed to the filtration apparatus with the filter membrane] is like the strainer and the microbes are like the spaghetti noodles that we want to keep.” What a perfect analogy to give to this young child! Ka‘ena beamed at Mikela and responded, “Oh, I see!” We followed Mikela’s lead and continued to answer the other children’s questions in a simplistic, analogous manner. What a treat it was to be able to answer their thought-provoking questions.

800px-Fish_Ponds_at_Honoruru,_Oahu,_1836,_by_John_Murray,_after_Robert_Dampier

Illustration of Oahu fishponds by Robert Dampier, 1825. (Wikipedia Commons)

It was in that moment that I realized how this summer had come full circle: I was working for an organization that, in its very title, seeks to educate. I gleaned from the knowledge of Dr. Alegado and Dr. Frank and in turn was able to pass on that knowledge to these young kids. Not only had I learned more science this summer, but I had formed a deeper appreciation for my culture, for the faithful caretakers at He‘eia fishpond, and for the brilliant scientists (like those at C-MORE) who seek to better understand the environment in which we live. I saw the value of perpetuating knowledge from one generation to the next.

It was then that I understood the necessity of bridging the gap.

Hawaiian fishponds, also known as loko i‘a, were traditional forms of aquaculture that served as a dependable protein source for ancient Hawaiians. The oldest fishpond in Hawai‘i was built about 1200 years ago. By the 1900s there were only 99 of the 360 built in the islands that were operable. 


Leah Shizuru attends the University of Hawaiʻi at Mānoa and will earn a B.S. in Microbiology Spring 2017. As a part-time lifeguard with Ocean Safety, she enjoys spending her free-time outside with her friends and family— surfing, hiking, swimming, paddling, and bodyboarding are just a few of her favorite hobbies. 

Leah would like to thank Yoshimi Rii, Hi’ilei Kawelo, Keli’i Kotubetey, and Dr. Rosie Alegado for their oversight and feedback on this blog post and would also like to thank Dr. Alegado for the opportunity she has to work in her lab.           

Advertisements

Would you like a side of plastic with your fish?

J.Wong-Ala_picContributed by Jennifer Wong-Ala

The aroma of freshly defrosted Alepisaurus ferox (Longnose Lancetfish)  stomach begins to fill the lab as I place my first stomach of the day on the dissection tray. I look at the unopened stomach and begin to see an odd shaped object protruding from the inside. I make my first cut to expose the stomach contents and see the culprit responsible. A white piece of plastic that closely resembles the material paint buckets are made of emerges along with a degraded piece of a black trash bag intertwined with fishing wire. I begin to shake my head and continue to document the rest the of stomach contents.

Plastic pollution has been known to affect large, much-adored marine animals such as sea turtles, monk seals and seabirds. These animals can be strangled, suffocated, or even killed when they ingest plastic debris. Even microscopic organisms such as copepods have been seen to eat microplastics because they closely resemble phytoplankton – microscopic plants in the ocean. Now teams of scientist from the Monterey Bay Aquarium Research Institute (MBARI) and the University of Hawai‘i at Mānoa (UHM) are finding more trash at deeper depths (2000 – 4000 m), where commercially important fish are mistaking plastic debris as food.

But how does plastic even get that deep in the ocean? Aren’t most plastic debris buoyant and stay on the surface? Scientists at MBARI analyzed 1149 video recordings of marine debris from 22 years, looking at videos from remotely operate vehicles (ROVs) in the Monterey Canyon, and found that the largest proportion of the debris observed in the videos was plastic (33%) and metal (23%). Plastic debris was most abundant in undersea canyons at depths of 2000 to 4000 meters. It is thought to have reached those depths by these canyons’ natural sediment transport processes, which exert forces great enough to carry research equipment to the bottoms of these canyons.

Plastic debris can also be passed through the food web in the ocean when deep-sea animals eat other organisms that can live at many depths. For example, plastic debris has been found in the stomachs of the lancetfish which occupy a broad depth range  (0 to 1,000 meters). Lancetfish have been found to ingest plastic from the surface and then travel to deeper depths where it becomes prey to other species such as Opah, Albacore and Yellowfin tuna. The plastic from the Lancetfish has now been passed through the food web and potentially to our dinner plates.

lancetfish

Lancetfish habitat extends to depths where plastic accumulates.

Big steps are already being made in regards to one type of plastic debris called microbeads. This year President Obama signed the Microbead-Free Waters Act of 2015 that will ban the use and sale of products containing microbeads by 2018 and 2019. This was a big step in making a positive impact for our environment, but there is so much more to do.

JWA_boat

The author working in the field

Jennifer Wong-Ala transferred from Kapi‘olani Community College to the University of Hawai‘i at Mānoa (UHM) in Fall 2015 as a Junior in the Global Environmental Science Program. She is a NOAA Hollings Scholar, C-MORE Scholar in Dr. Neuheimer’s Lab, Laboratory Technician in Dr. Drazen’s Lab, and is also part of the SOEST Maile Mentoring Bridge. Jenn is interested in computer modeling/analysis of how ocean processes interact with organisms in the ocean and how to best preserve these natural resources. In the future she plans to bring these skills and interests together to conserve marine life in Hawaii. This post was originally written for OCN 320 (Aquatic Pollution), a writing intensive requirement for the GES major.           

Inspiring future discoveries and changing the world

Here is our second entry of our 1st SOESTblog Writing Contest “What drives you?”! Each week, contestants will share what drives them to do their research day in and day out. Each article will be posted for 1 week and winners will be determined by the most # of reads on the site! Help Michelle this week by sharing her article!

 

Screen Shot 2015-04-10 at 9.28.17 AMContributed by Michelle Jungbluth

 

What is it that scientists really do? And what drives them to do it?

The life of a scientist is not as straightforward as you might think. To the left is a list of 18 things I am expected to do as a graduate student scientist— in addition to the necessary daily human activities such as grocery shopping, maintaining personal relationships, and keeping my apartment clean.

Given that outrageous list, I sometimes feel that there aren’t enough hours in the day  So what keeps me going?

By being endlessly curious!

I love being out on the waves, feeling the sets roll in, seeing the blue-green of the water. What makes it even better is to know what caused those waves and what shapes them, how the smell and color of the sea is related to recent rainfall in the area, that the little moving specks in the water are actually living, breathing plankton that fuel healthy ocean ecosystems.

I would not be happy working in the office all day, every day, crunching numbers or making phone calls. I would not be fulfilled as a veterinarian, neutering animals half of the week and seeing sick animals the other half of the week. I would not be satisfied working with laboratory animals, born to a life in a cage living far from their natural habitats. I know these things because I have experience with them and decided that I wanted more. It is only through experience that you can truly decide if a career path is right for you, and I am thankful, and have deep respect for everyone who has been a part of these prior experiences.

The moment I decided to move to Hawaii with my scientist husband, Sean Jungbluth was life-changing. That is when I discovered my love for oceanography (and copepods!). Some of what drives me is the diversity in that long list of responsibilities I just gave. The inherent challenges in that list keep me feeling fulfilled, most of the time.

The less tangible outcomes of my work are also what drive me to keep at it. As a scientist, the work I do now and in the future could impact the world in so many ways:

  • Inspire future generations to be scientists; despite that long list of challenging work, my science includes a lot of fun; sometimes I get to cross the equator on a British Antarctic icebreaker, and chase storms for my research
  • Be the basis for future discoveries!
  • I could, if I’m very lucky and work hard enough, make a discovery that illuminates or changes our relationship to the world around us!

When I feel discouraged, or when an experiment does not go as planned, these are the things that inspire me to push onward.

Me at the 2013 SOEST Open House, where I helped create an exhibit teaching schoolchildren and families about zooplankton, hoping to inspire future generations!

Me at the 2013 SOEST Open House, where I helped create an exhibit teaching schoolchildren and families about zooplankton, hoping to inspire future generations!

I am thankful for the hundreds of people who have been my teachers or mentors throughout my life so far. From my parents and grandparents, to all my teachers in the 20+ years of K-12, college, and graduate education, my employers over the years, and the past and present scientists who inspire me. It is due to your inspiration that I am driven to be who I am, and do what I do every day.

 

Liked Michelle’s article? Share her post today!

 


 

Michelle Jungbluth is a PhD candidate in the Department of Oceanography at the University of Hawaii at Manoa. She uses traditional and novel molecular techniques to study plankton food web interactions and the importance of highly abundant larval copepods in marine ecosystems. She is also a co-founder of the Science Communicators ‘Ohana and a Teaching Assistant for Introductory Oceanography OCN 201 at UH Manoa.

 

Bedtime Science Stories

Contributed by Megumi Chikamoto

Every night, while sitting beside my 7-year-old son’s bedside, I ask him one question.

“What did you do today?”
“Work,” he replies, briefly. Sometimes he says, “math,” or “recess.” Some days, he turns to ask me the same question.
“Mommy, what did you do today?”

To answer his question, I try to explain one of my current research projects in detail. When I talk about the basic theory or hypothesis of my scientific topics, my son is really interested. Specifically, I have succeeded in catching his attention by talking about the drastic changes in marine plankton species that occurred around 15,000 years ago. After listening to my explanation, he comes up with his own hypothesis, which he tells me excitedly. This conversation with my son is much like brainstorming with my colleagues, and I am impressed that my son understands the big concepts of my research. But one night, I decided to take it one step further by explaining the modeling concept of my research. He fell asleep before I finished my story.

I often face this problem when I talk about modeling simulation to the general public, like my friends or relatives, not just my son. People, especially those living in Hawaii, surrounded by the ocean, tend to have a stereotypical image of oceanographers, thinking that we go out to sea for our research. I am an oceanographer; yet, I do not go out to sea. Instead, I sit down in front of a computer, peer at a screen, and write programming codes for over 6 hours everyday, 5 days a week. When I explain this to my friends and relatives, this unexpected research style seems to intrigue them, and they ask me to tell them more about my research. My research approach is using an Earth system model that is a numerical tool for calculating time evolution of the global climate system. The model calculates the atmosphere and ocean phenomena, such as wind blows, ocean currents and precipitation. Furthermore, the model includes components of marine ecosystems such as tiny plankton. My target is to elucidate marine ecosystem processes that link to climate change. But when I describe a model in such a way, my audience, like my son, loses interest quickly. This is one of the reasons why I want to improve my skill of public speech.

map_chl

Map of present-day phytoplankton biomass in chlorophyll concentration in an Earth System model. Image Credit: M. Chikamoto

One thing I realize now is how much jargon my explanation contains! Due to the specialized words, my audience might hardly understand the basic concepts and their attention is lost. Generally, people prefer to relate to a personal story, or sometimes an emotional one like in a novel; no one cares about the specialized issues (if someone is very interested in the specialized issues, he/she might be close to being the expert!). I know now that I should avoid describing my research like a scientific presentation, which is what I have done so far. Rather, I need to focus on the storytelling during an interactive conversation. Without more ado, I will try storytelling.

Why do we simulate?

Just think about this. If you take photographs in sequence with a camera and then want to know what is happening between the photos, what do you do? You might convert these intermittent images to an image sequence by taking the gaps and try to predict what happened in between in your brain. I do similar things in my research. Oceanographers monitor signals of ocean phenomena when going to sea, but getting the data is like one photo snapshot at a time. In order to display an image sequence like you do in your brain, I simulate it using a computer model instead. The model simulation in the computer calculates the time evolution of the Earth environment. By analyzing the simulated results, I can know what is going on in the environment. In fact, I use many kinds of models for today’s environment as well as for the past or the future. Through past, present and future climate simulations, I want to know mechanisms of the earth systems – how the earth systems of several different rhythms play harmony.

Trying again

One night, I decided to try explaining model simulation to my son again.

“I simulate the Earth environment using a computer and study what is going on in the atmosphere and the ocean. When I was a college student, computers were very slow and we were waiting to finish the calculation for several months. But nowadays, technology has developed tremendously and computer speed is much faster than it was in the previous era. For example, my computer can finish a 500-year-long simulation while you are sleeping at night. In this way, we can go back to the past using very long simulations, even as far back as to the Ice Age. Using a computer, I can study all of the past, the present, and the future climate.”

“That’s great!” my son said, admiringly.

—————————————————————————————————————————

chikamoto_m

Megumi O. Chikamoto is an affiliate researcher in SOEST and a postdoctoral researcher at International Pacific Research Center. After getting her Ph.D in Atmosphere and Ocean Science at Hokkaido University in Japan, she has worked at the University of Minnesota, the University of Tokyo, the Japan Agency of Marine Science and Technology, and then the current position.  Her research focuses on marine ecosystem response to climate variability and changes in the past, current, and future.

It’s Not Always Bad to Cross the Line


JungbluthM

 

 

Contributed by Michelle Jungbluth, e-mailed via satellite while battling rough seas along the Atlantic Meridional Transect. 

Monday October 13th was an exciting day for us at sea. This is the day we crossed the equator.

Me in the control room as we officially cross the equator - 0° 00.12’ N

Me in the control room as we officially cross the equator – 0° 00.12’ N

After a restless nights sleep, I woke up at 01:30 am to continue my normal early-morning routine before the big “Crossing the Line” ceremony at noon. Most of my daily routine included picking out hundreds of ~8 different copepod species (microscopic shrimp-like insects of the sea) into cryogenic tubes until breakfast. After about 21 days at sea collecting samples, my advisor Erica Goetze and I had individually isolated over 10,000 copepods, and at this point we still had three weeks of daily sampling to go.

That morning, I received an ‘anonymous tip’ from one of the police (a double agent?) recommending that as inductees we plan effective defenses, since it would be more fun for everyone. I made the last minute decision to save a portion of our stinky morning tow plankton goop for my defenses against King Neptune’s police force! This turned out to be quite useful when all of us not-yet-inducted line crossers got together before lunch to prepare our weapons: condom-water balloons!

My weapons to fight King Neptune's police force

My weapons to fight King Neptune’s police force

Why condoms? I would chalk it up to MacGyver-esque resourcefulness. The doctor had a large stock of condoms she did not mind sharing, since she too was crossing the line that day!   Condoms work quite well as water balloons. We also decided to include extra special “treats” in the balloons… purple dye, fabric softener for strong scent, and my favorite, the stinky plankton water. We then chose our hiding places, and I chose a location with two other line crossers, Ryan and Rafael.

At the strike of 13:00 the announcement came: “King Neptune has arrived on the ship, and any non-shellbacks (those who have previously crossed the equator) are to be put on trial for their crimes against his subjects!” That was our cue to quickly get to our hiding places and be ready to defend ourselves against the police. Seasoned veterans of the ceremony were chosen as the police force, so we knew who to expect.

Us "shellbacks" in our hiding place, on the defensive against one of the King's police

Us “shellbacks” in our hiding place, on the defensive against one of the King’s police

We were found within minutes. There have been many line crossings on this ship, the RRS James Clark Ross, so there were not many hiding locations left that the police didn’t know about. 

Once we were caught, trial and punishment were simple: sit before King Neptune and his lovely wife Aphrodite (i.e. John and Colin) and be put on trial. Guilty of a charge meant you received some volume of old, cabbage ridden, vinegary kitchen slop over your head, down your shirt, in your face … etc. Then before we were deemed an official “Shellback”, we had to kneel before the king and kiss a dead fish!

Me receiving a hearty scoopful of kitchen slop over the head!

Me receiving a hearty scoopful of kitchen slop over the head!

As you can see, not even I – sweet and harmless Michelle – was safe from the wrath of King Neptune! You might be wondering, what were my “charges”? In all I received 8 charges, and here are a few of them:

  • Forcing my study subjects through a tiny mesh thus causing a slow and painful death
  • Pronouncing tomato incorrectly (according to the British dominating the science team)
  • Distracting the bridge with my day-glo t-shirts
  • Wearing a ridiculous fireman’s helmet
  • Spending all day tanning at the CTD while I say I am working (I have to sit there for hours concentrating animals from the water!)

My hair exuded the scent of vinegar for at least three days afterward, and I am still finding remnants of our ‘water balloons’ on the deck of the ship despite an attempt to clean them up that evening. In the end, it’s all in good fun, and will be one of the most fun and memorable days of this shellback’s life.

Continue reading

From a pre-Veterinarian, to Animal Behaviorist, to Adoptions Counselor, to Biological Oceanographer…

JungbluthMBy Michelle Jungbluth

I found out recently that my 12 year old self knew where I would end up.

In going through some old boxes and folders from elementary school, I found my time capsule from 6th grade with the following question:  Where will you be in 10 years?  My answer, ‘Marine Biologist’ (cue my jaw to drop as I read this, because I didn’t remember writing it).  Little did I know at the time, that I would in fact find my way to fulfilling that dream, only a few years and many side-tracked voyages later.

To make a long story short, I grew up in Wisconsin.  For college I attended the University of Wisconsin Madison and completed a bachelor’s degree in Biology, with a focus on terrestrial animal science (land-locked state, seemed like a logical decision).  During the beginning of this undergraduate career I wanted to be a Veterinarian, but realized that it wasn’t the right path for me.  So I moved towards animal behavior, and spent 2.5 years working with primates at the a primate research center in Madison.  While it was an exciting job (I have lots of stories…), I did not feel comfortable with future career opportunities, and knew that I would have to find something else.

Pumpkin day at the primate center was always exciting.

Pumpkin day at the primate center was always exciting.

In the spring of 2008, my boyfriend of 3.5 years (now husband), Sean Jungbluth (see his article from 2 weeks ago here), got accepted to school here at UH Manoa, and asked if I would move to Hawaii with him.   After a bit of deliberation, we packed up our things, bought our one-way tickets, and started our lives in Hawaii.  For my first two years I worked at the Hawaiian Humane Society as an Adoptions Counselor.

At a local pet store trying to find a home for this adorable little chihuahua mix.

At a local pet store trying to find a home for this adorable little chihuahua mix.

Wanting to continue my education, I started volunteering in a lab where I learned DNA extraction, PCR, and sequencing.  I had always been interested in genetic techniques but never needed to learn them with my prior animal behavior focus, and quickly fell in love with the ocean and molecular biology of copepods.  Luckily, the lab I was working in had an opening for a graduate assistant position working on a project studying copepods in Kaneohe Bay, and I excitedly accepted the opportunity.

Me in front of the RV Atlantis, a Woods Hole ship where I got to spend 2.5 weeks helping my husband collect samples for his research

Me in front of the RV Atlantis, a Woods Hole ship where I got to spend 2.5 weeks helping my husband collect samples for his research

This convoluted journey to become a biological oceanographer involved a lot of round-about paths, a lot of difficult decisions, and perhaps a little bit of luck.  In the end, I am happy about how I got here, where I am now, and where I may be going in both the near and distant future.

Michelle Jungbluth is a student in the Oceanography department at UH Manoa characterizing the response of plankton communities to storm events in Kaneohe Bay. She is specifically looking at the response by copepod nauplii, the youngest (and more abundant) life stages of copepods, using a DNA-based method called quantitative real-time PCR to study their role in the marine food web. 

Creatures Lurking in the Darkness

By Anela Choy

In clear waters to the far north-west of Hawaiʻi’s main islands is a series of submerged and partially submerged remnants of once volcanic islands and drowned coral reefs.  These land masses and the 139,797 square-miles of the surrounding Pacific Ocean comprise the Papahānaumokuākea Marine National Monument, our nation’s largest conservation area and one of the largest conserved areas of marine environment globally.  Of the Marine National Monument, the vast majority of this protected area consists of deep, offshore waters that are also the least explored.

In the summer of 2009 the good ship Hiʻialakai carried a crew of scientists throughout the Monument on a month-long journey to conduct a variety of scientific and cultural explorations.  The Drazen laboratory in the Department of Oceanography at UH Mānoa is also known informally as the Deep Sea Fish Ecology Lab and thus, our participation was focused on using baited deep-sea traps to describe the vastly unknown cast of fishy deep-sea characters.  John Yeh, who designed and built the trap, and I repeatedly threw the trap off the back of the ship at various depths (mostly in very deep waters thousands of feet below the sunlit surface) and at various locations within the Monument.  In addition to comparing the Monument’s deep-sea scavenger community to others’ around the world, we wanted to see how this community varied in both the horizontal and vertical dimensions of the Monument.

The creatures lurking in the darkness were a surprise not only to science but especially to my eyes and mind.  Bright red Heterocarpus shrimps with antennae as long as pencils, slinking and shiny eels with smooth grey skin, ugly deep-sea fish known as rattails with their eyes and stomachs blown-up…these guys were enough to give any normal person nightmares.  Most disturbing (and perhaps most fascinating!) was the giant hagfish (Eptatretus carlhubbsi) that came up in one particularly slimy haul.  We won’t talk numbers and sizes, but know that it was as big as any respectably scary boa constrictor or python.  The hagfish had a face only a mother could love, with multiple fleshy barbels dangling from a large slimy hole (i.e., nostril).  There were no real eyes to look into, only primordial eye spots that held no sign of emotion or previous life.  What stuck with me most (yes, pun intended) was the heinous amount of icky, sticky slime and mucous that oozed out of the collection of glands running along the length of its chubby, slithering body.

photo by A. Choy

photo by A. Choy

John and I spent hours burning through an entire roll of paper towels to clean the continually oozing sticky stuff from the hagfish and everything it touched, including us.  When the spineless fish was as clean as we could get it, we snapped an array of pictures as if it was a celebrity.  That month in the Monument left me awe-inspired and entertained, truly driving home the reality of Earth’s deep-sea environment being less explored than the surface of our moon.

photo by A. Choy

photo by A. Choy